COSMOS: A HybridN‐Body/Hydrodynamics Code for Cosmological Problems
Open Access
- 10 June 2000
- journal article
- research article
- Published by American Astronomical Society in The Astrophysical Journal
- Vol. 536 (1) , 122-143
- https://doi.org/10.1086/308908
Abstract
We describe a new hybrid N-body/hydrodynamical code based on the particle-mesh (PM) method and the piecewise-parabolic method (PPM) for use in solving problems related to the evolution of large-scale structure, galaxy clusters, and individual galaxies. The code, named COSMOS, possesses several new features that distinguish it from other PM-PPM codes. In particular, to solve the Poisson equation we have written a new multigrid solver which can determine the gravitational potential of isolated matter distributions and which properly takes into account the finite-volume discretization required by PPM. All components of the code are constructed to work with a nonuniform mesh, preserving second-order spatial differences. The PPM code uses vacuum boundary conditions for isolated problems, preventing inflows when appropriate. The PM code uses a second-order variable-time-step time integration scheme. Radiative cooling and cosmological expansion terms are included. COSMOS has been implemented for parallel computers using the Parallel Virtual Machine (PVM) library, and it features a modular design which simplifies the addition of new physics and the configuration of the code for different types of problems. We discuss the equations solved by COSMOS and describe the algorithms used, with emphasis on these features. We also discuss the results of tests we have performed to establish that COSMOS works and to determine its range of validity.Keywords
All Related Versions
This publication has 39 references indexed in Scilit:
- The Piecewise Parabolic Method (PPM) for gas-dynamical simulationsPublished by Elsevier ,2004
- Hydra: an Adaptive-Mesh Implementation of P 3M-SPHThe Astrophysical Journal, 1995
- A piecewise parabolic method for cosmological hydrodynamicsComputer Physics Communications, 1995
- Nonlinear hydrodynamics of cosmological sheets. 1: Numerical techniques and testsThe Astrophysical Journal, 1994
- A hydrodynamic approach to cosmology - MethodologyThe Astrophysical Journal Supplement Series, 1992
- Efficient solution algorithms for the Riemann problem for real gasesJournal of Computational Physics, 1985
- Numerical techniques for large cosmological N-body simulationsThe Astrophysical Journal Supplement Series, 1985
- A Direct Eulerian MUSCL Scheme for Gas DynamicsSIAM Journal on Scientific and Statistical Computing, 1985
- On the clustering of particles in an expanding UniverseMonthly Notices of the Royal Astronomical Society, 1981
- Multi-Level Adaptive Solutions to Boundary-Value ProblemsMathematics of Computation, 1977