On closure and factorization properties of subexponential and related distributions

Abstract
For a distribution function F on [0, ∞] we say F ∈ if {1 – F(2)(x)}/{1 – F(x)}→2 as x→∞, and F∈, if for some fixed γ > 0, and for each real , limx→∞ {1 – F(x + y)}/{1 – F(x)} ═ e– n. Sufficient conditions are given for the statement FF * G ∈ and when both F and G are in y it is proved that F*GpF + 1(1 – p) G ∈ for some (all) p ∈(0,1). The related classes ℒt are proved closed under convolutions, which implies the closure of the class of positive random variables with regularly varying tails under multiplication (of random variables). An example is given that shows to be a proper subclass of ℒ 0.

This publication has 5 references indexed in Scilit: