Characterization of Four Outer Membrane Proteins Involved in Binding Starch to the Cell Surface of Bacteroides thetaiotaomicron
- 1 October 2000
- journal article
- research article
- Published by American Society for Microbiology in Journal of Bacteriology
- Vol. 182 (19) , 5365-5372
- https://doi.org/10.1128/jb.182.19.5365-5372.2000
Abstract
Bacteroides thetaiotaomicron, a gram-negative obligate anaerobe, utilizes polysaccharides by binding them to its cell surface and allowing cell-associated enzymes to hydrolyze them into digestible fragments. We use the starch utilization system as a model to analyze the initial steps involved in polysaccharide binding and breakdown. In a recent paper, we reported that one of the outer membrane proteins involved, SusG, had starch-degrading activity but was not sufficient for growth on starch. Moreover, SusG alone did not have detectable starch binding activity. Previous studies have shown that starch binding is essential for starch utilization. In this paper, we report that four other outer membrane proteins, SusC through SusF, are responsible for starch binding. Results of 14C-starch binding assays show that SusC and SusD both contribute a significant amount of starch binding. SusE also appears to contribute substantially to starch binding. Using affinity chromatography, we show in vitro that these Sus proteins interact to bind starch. Moreover, protease accessibility of either SusC or SusD greatly increased when one was expressed without the other. This finding supports the hypothesis that SusC and SusD interact in the outer membrane. Evidence from additional protease accessibility studies suggests that SusC, SusE, and SusF are exposed on the cell surface. Our results demonstrate that SusC and SusD act as the major starch binding proteins on the cell surface, with SusE enhancing binding. SusF9s role in starch utilization has yet to be determined, although the fact that starch protected it from proteolytic attack suggests that it does bind starch.Keywords
This publication has 25 references indexed in Scilit:
- Studies on transformation of Escherichia coli with plasmidsPublished by Elsevier ,2006
- 8 Genetic Methods for Bacteroides SpeciesPublished by Elsevier ,1999
- A Bacteroides thetaiotaomicron outer membrane protein that is essential for utilization of maltooligosaccharides and starchJournal of Bacteriology, 1996
- The Cellulosome: An Exocellular, Multiprotein Complex Specialized in Cellulose DegradationCritical Reviews in Biochemistry and Molecular Biology, 1996
- Assembly of a hetero-oligomeric membrane protein complex.Proceedings of the National Academy of Sciences, 1992
- Location and characterization of genes involved in binding of starch to the surface of Bacteroides thetaiotaomicronJournal of Bacteriology, 1992
- Purification and characterization of the membrane-associated components of the maltose transport system from Escherichia coliJournal of Biological Chemistry, 1991
- Biochemical evidence that starch breakdown by Bacteroides thetaiotaomicron involves outer membrane starch-binding sites and periplasmic starch-degrading enzymesJournal of Bacteriology, 1989
- Genetic evidence that outer membrane binding of starch is required for starch utilization by Bacteroides thetaiotaomicronJournal of Bacteriology, 1989
- Regions in Bacteroides plasmids pBFTM10 and pB8-51 that allow Escherichia coli-Bacteroides shuttle vectors to be mobilized by IncP plasmids and by a conjugative Bacteroides tetracycline resistance elementJournal of Bacteriology, 1986