Abstract
When linear acoustic theory is applied to the thickness noise problem of a supersonic propeller, it can give rise to a surface on which the pressure is discontinuous or singular. A method is described for obtaining the equation of this surface (when it exists), and the pressure field nearby; jumps, logarithms and inverse square roots occur, and their coefficients may be calculated exactly. The special case of a blade with a straight radial edge gives a cusped cone, whose sheets, each with a different type of discontinuity or singularity in pressure, are separated by lines of cusps; the coefficients in formulae for the pressure near the surface tend to infinity as a cusp line is approached, in proportion to the inverse quarter power of distance from the line. These results determine regions of space where nonlinear effects are important, and they suggest a strong analogy with sonic boom.

This publication has 10 references indexed in Scilit: