The Disulfide Linkages and Glycosylation Sites of the Human Natriuretic Peptide Receptor-C Homodimer
- 1 September 1994
- journal article
- research article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 33 (37) , 11372-11381
- https://doi.org/10.1021/bi00203a036
Abstract
The natriuretic peptide receptor-C (NPR-C) constitutes greater than 95% of the natriuretic peptide binding sites in vivo. This cell surface glycoprotein is a disulfide-linked homodimer with a subunit molecular weight of 68,000. Two sources and types of ANP affinity-purified human NPR-C were used to map disulfide linkages and glycosylation sites of this receptor by mass spectrometry: the extracellular domain obtained by papain cleavage of a receptor-IgG fusion protein expressed in Chinese hamster ovary cells, and a baculovirus/Sf9-expressed cytoplasmic truncation mutant in which 34 of 37 cytoplasmic domain amino acids were deleted. Two intramolecular disulfide bonded loops were found in the 435 amino acid extracellular domain (C63-C91, C168-C216). The juxtamembrane residues C428 and C431 are involved in homodimer formation, confirmed by site-directed mutagenesis of full-length NPR. Three of the four potential Asn-linked glycosylation sites are occupied: N41 (complex), N248 (high mannose), and N349 (complex; partial occupancy). These data describe the intra- and intermolecular linkages in NPR-C, providing a model for the homologous guanylyl cyclase receptors, NPR-A and NPR-B; both of the cyclase receptors likely contain the first amino-terminal 29 amino acid loop, but only NPR-A possesses the second 49 amino acid loop in common with NPR-C.Keywords
This publication has 0 references indexed in Scilit: