Vibrational Band Intensities of Hydrocarbons

Abstract
The experimental observables of a vibrational spectrum are depicted either in the form of their positions, i.e., frequency relating the energy required in a given quantum transition, or as the intensities of absorption and scattering related to their transition probabilities. Expressed in terms of molecular parameters, the frequencies depend on the geometry, atomic masses, and intramolecular forces [11 while the band intensities [2] reflect changes in dipole moment (infrared) or polarizabilities (Raman) which are caused during a vibrational displacement and are related to movement of electronic charges within the individual bonds. The mathematical basis for determining vibrational frequencies was well established as early as 1940 by Wilson [3] and others [4, 51. Applying the interpretation of vibrational spectra has become routine in the multitudinous disciplines of chemical literature [6–26]. Accounts of infrared and Raman spectra [27–29], collection of literature [30], and reasonable sets of intramolecular forces [31, 321 are now available for the prediction of normal frequencies of hydrocarbons.