Insertional mutagenesis in mice: new perspectives and tools

Abstract
Insertional mutagenesis has been at the core of functional genomics in many species. In the mouse, improved vectors and methodologies allow easier genome-wide and phenotype-driven insertional mutagenesis screens. The ability to generate homozygous diploid mutations in mouse embryonic stem cells allows prescreening for specific null phenotypes prior to in vivo analysis. In addition, the discovery of active transposable elements in vertebrates, and their development as genetic tools, has led to in vivo forward insertional mutagenesis screens in the mouse. These new technologies will greatly contribute to the speed and ease with which we achieve complete functional annotation of the mouse genome.