A Study of Sampling-Variability Effects in Raindrop Size Observations
Open Access
- 1 July 1993
- journal article
- Published by American Meteorological Society in Journal of Applied Meteorology and Climatology
- Vol. 32 (7) , 1259-1269
- https://doi.org/10.1175/1520-0450(1993)032<1259:asosve>2.0.co;2
Abstract
Because of the randomness associated with sampling from a population of raindrops, variations in the data reflect some undetermined mixture of sampling variability and inhomogeneity in the precipitation. Better understanding of the effects of sampling variability can aid in interpreting drop size observations. This study begins with a Monte Carlo simulation of the sampling process and then evaluates the resulting estimates of the characteristics of the underlying drop population. The characteristics considered include the liquid water concentration and the reflectivity factor; the maximum particle size in each sample is also determined. The results show that skewness in the sampling distributions when the samples are small (which is the usual case in practice) produces a propensity to underestimate all of the characteristic quantities. In particular, the distribution of the sample maximum drop sizes suggests that it may be futile to try to infer an upper truncation point for the size distribution... Abstract Because of the randomness associated with sampling from a population of raindrops, variations in the data reflect some undetermined mixture of sampling variability and inhomogeneity in the precipitation. Better understanding of the effects of sampling variability can aid in interpreting drop size observations. This study begins with a Monte Carlo simulation of the sampling process and then evaluates the resulting estimates of the characteristics of the underlying drop population. The characteristics considered include the liquid water concentration and the reflectivity factor; the maximum particle size in each sample is also determined. The results show that skewness in the sampling distributions when the samples are small (which is the usual case in practice) produces a propensity to underestimate all of the characteristic quantities. In particular, the distribution of the sample maximum drop sizes suggests that it may be futile to try to infer an upper truncation point for the size distribution...Keywords
This publication has 0 references indexed in Scilit: