PET Studies of Net Blood—Brain Clearance of FDOPA to Human Brain: Age-Dependent Decline of [18F]Fluorodopamine Storage Capacity
- 1 July 2005
- journal article
- Published by SAGE Publications in Journal of Cerebral Blood Flow & Metabolism
- Vol. 25 (7) , 807-819
- https://doi.org/10.1038/sj.jcbfm.9600079
Abstract
Conventional methods for the graphical analysis of 6-[18F]fluorodopa (FDOPA)/positron emission tomography (PET) recordings ( Kappin) may be prone to negative bias because of oversubtraction of the precursor pool in the region of interest, and because of diffusion of decarboxylated FDOPA metabolites from the brain. These effects may reduce the sensitivity of FDOPA/PET for the detection of age-related changes in dopamine innervations. To test for these biasing effects, we have used a constrained compartmental analysis to calculate the brain concentrations of the plasma metabolite 3- O-methyl-FDOPA (OMFD) during 120 mins of FDOPA circulation in healthy young, healthy elderly, and Parkinson's disease subjects. Calculated brain OMFD concentrations were subtracted frame-by-frame from the dynamic PET recordings, and maps of the FDOPA net influx to brain were calculated assuming irreversible trapping ( Kapp). Comparison of Kappin and Kapp maps revealed a global negative bias in the conventional estimates of FDOPA clearance. The present OMFD subtraction method revealed curvature in plots of Kapp at early times, making possible the calculation of the corrected net influx ( K) and also the rate constant for diffusion of decarboxylated metabolites from the brain ( kloss). The effective distribution volume (EDV2; K/ kloss) for FDOPA, an index of dopamine storage capacity in brain, was reduced by 85% in putamen of patients with Parkinson's disease, and by 58% in the healthy elderly relative to the healthy young control subjects. Results of the present study support claims that storage capacity for dopamine in both caudate and putamen is more profoundly impaired in patients with Parkinson's disease than is the capacity for DOPA utilization, calculated by conventional FDOPA net influx plots. The present results furthermore constitute the first demonstration of an abnormality in the cerebral utilization of FDOPA in caudate and putamen as a function of normal aging, which we attribute to loss of vesicular storage capacity.Keywords
This publication has 58 references indexed in Scilit:
- Ageing of substantia nigra in humans: cell loss may be compensated by hypertrophyNeuropathology and Applied Neurobiology, 2002
- Design and construction of a realistic digital brain phantomIEEE Transactions on Medical Imaging, 1998
- Regulation of DOPA Decarboxylase Activity in Brain of Living RatJournal of Neurochemistry, 1995
- Pharmacokinetics of Plasma 6-[18F]Fluoro-l-3,4-Dihydroxyphenylalanine ([18F]FDOPA) in HumansJournal of Cerebral Blood Flow & Metabolism, 1993
- Apomorphine test for dopaminergic responsiveness: A dose assessment studyMovement Disorders, 1993
- Positron emission tomography suggests that the rate of progression of idiopathic parkinsonism is slowAnnals of Neurology, 1991
- Kinetics of in vitro decarboxylation and the in vivo metabolism of 2-18F- and 6-18F-fluoroDOPA in the hooded ratBiochemical Pharmacology, 1988
- Altered metabolism of [18F]-6-fluorodopa in the hooded rat following inhibition of catechol-O-methyltransferase with U-0521Biochemical Pharmacology, 1987
- The Metabolism of [18F]6‐Fluoro‐l‐3,4‐Dihydroxyphenylalanine in the Hooded RatJournal of Neurochemistry, 1987
- Determination of plasma [18F]-6-fluorodopa during positron emission tomography: Elimination and metabolism in carbidopa treated subjectsLife Sciences, 1986