Role of SMAD and Non-SMAD Signals in the Development of Th17 and Regulatory T Cells

Abstract
Whereas TGF-β is essential for the development of peripherally induced Foxp3+ regulatory T cells (iTreg cells) and Th17 cells, the intracellular signaling mechanism by which TGF-β regulates development of both cell subsets is less understood. In this study, we report that neither Smad2 nor Smad3 gene deficiency abrogates TGF-β–dependent iTreg induction by a deacetylase inhibitor trichostatin A in vivo, although the loss of the Smad2 or Smad3 gene partially reduces iTreg induction in vitro. Similarly, SMAD2 and SMAD3 have a redundant role in development of Th17 in vitro and in experimental autoimmune encephalomyelitis. In addition, ERK and/or JNK pathways were shown to be involved in regulating iTreg cells, whereas the p38 pathway predominately modulated Th17 and experimental autoimmune encephalomyelitis induction. Therefore, selective targeting of these intracellular TGF-β signaling pathways during iTreg and Th17 cell development might lead to the development of therapies in treating autoimmune and other chronic inflammatory diseases.

This publication has 54 references indexed in Scilit: