Transport Coefficients of Composite Materials
- 1 April 1968
- journal article
- research article
- Published by AIP Publishing in Journal of Applied Physics
- Vol. 39 (5) , 2349-2354
- https://doi.org/10.1063/1.1656558
Abstract
The problem of the effective conductivity of a composite material whose local conductivity is a function of position is treated. Using the analogy between this problem and the diffusion of ions in a periodic potential, previously obtained variational results are used to obtain upper and lower bounds for the effective conductivity. These bounds are shown to be the conductivities obtained in certain commonly used equivalent circuit approximations. Although the discussion in the paper is in terms of the electrical conductivity, the theory is equally applicable to other transport coefficients, such as the heat conductivity and the diffusion constant, as well as to a class of response functions such as the magnetic permeability and dielectric constant.This publication has 6 references indexed in Scilit:
- Thermal Conductivities of Unidirectional MaterialsJournal of Composite Materials, 1967
- Longitudinal Shear Loading of a Unidirectional CompositeJournal of Composite Materials, 1967
- Preparation, Phase-Boundary Energies, and Thermoelectric Properties of InSb-Sb Eutectic Alloys with Ordered MicrostructuresJournal of Applied Physics, 1963
- Effective Diffusion Constant in a Polyelectrolyte SolutionThe Journal of Chemical Physics, 1963
- A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase MaterialsJournal of Applied Physics, 1962
- On the Self-Diffusion of Ions in a Polyelectrolyte SolutionThe Journal of Chemical Physics, 1962