Novel sulfasalazine analogues with enhanced NF-kB inhibitory and apoptosis promoting activity

Abstract
The NF-kB transcription factor plays a key role in the regulation of apoptosis by modulating expression of a wide range of cell death control molecules. NF-kB also plays an important role in human diseases by promoting inappropriate cell survival. Small molecule inhibitors of NF-kB are therefore likely to provide novel therapeutic opportunities. Sulfasalazine (SFZ) is a synthetic anti-inflammatory comprising an aminosalicylate, 5-amino salicylic acid (5-ASA), linked to an antibiotic, sulfapyridine (SPY). SFZ, but not 5-ASA or SPY, inhibits activation of NF-kB. We synthesised a small number of SFZ analogues and determined their ability to inhibit NF-kB activity and promote apoptosis in chronic lymphocytic leukaemia and hepatic stellate cells, where NF-kB plays an important role in cell survival. Remarkably, 3 of the 6 analogues synthesised were significantly more effective (up to 8-fold) inhibitors of NF-kB dependent transcription and this increased activity was associated with enhanced apoptosis. Therefore, it is possible to readily improve the NF-kB inhibiting activity of SFZ and analogues of SFZ may be attractive therapeutic agents for malignancies and chronic liver disease where NF-kB is thought to play a significant role.