Rate-Limiting Steps of Electron Transport in Chloroplasts during Ontogeny and Senescence of Barley

Abstract
Partial photochemical activities and concentrations of electron carriers were measured relative to chlorophyll in barley (Hordeum vulgare L.) thylakoids, isolated from primary leaves during ontogeny and senescence. Thylakoids from mature leaves generated somewhat higher quantum efficiencies than thylakoids from premature or senescing leaves; this phenomenon did not appear to be caused by any deficiency of water-splitting enzyme. Under conditions of saturating light, the noncyclic electron flux from water to the reducing side of photosystem I increased during leaf ontogeny, peaked at maturity, and declined during senescence. However, electron fluxes appeared to be limited at different steps before and after leaf maturity. Before leaf maturity, the rate-limiting step was located prior to the reoxidation of plastohydroquinone. After leaf maturity, the decline in noncyclic electron flux correlated with a decrease in the concentration of cytochromes f and b6. This correlation, together with a consideration of mechanisms of entry and exit of electrons in 3-(3,4-dichlorophenyl)-1,1-dimethylurea-treated thylakoids, suggests that the cytochrome f/b6-containing complex, and not plastocyanin or P700, is the site of entry of electrons from the reduced forms of 2,6-dichlorophenolindophenol and diaminodurene. It is therefore proposed that in senescing leaves the cytochrome f/b6-containing complex limited electron transport by constraining the rate of reduction of cytochrome f by plastohydroquinone.