Displacement damage in Si imagers for space applications

Abstract
Particle-induced displacement damage degrades performance parameters in state-of-the-art solid state imagers due to charge transfer inefficiency, increased dark current, and dark current spikes. This paper reviews some recent radiation damage measurements and discusses imager degradation in the context of a general understanding of how displacement damage alters semiconductor properties. An approach to predict the response of a sensor to a given space environment and shielding configuration is presented and the authors briefly discuss other displacement damage concerns such as secondary neutron production in shielding. Using an example based on limited experimental input, the authors demonstrate how higher (10 MeV) energy protons are responsible for over 90 of the damage in heavily shielded imager applications.

This publication has 0 references indexed in Scilit: