Abstract
A reconstruction algorithm is derived for parallel beam transmission computed tomography through two-dimensional structures in which diffraction of the insonifying beam must be taken into account. The algorithm is found to be completely analogous to the filtered backprojection algorithm of conventional transmission tomography with the exception that the backprojection operation has to be replaced by a back propagation process whereby the complex phase of a field measured over a line outside the object is made to propagate back through the object space. The algorithm is applicable to diffraction tomography within either the first Born or Rytov approximations. Application of the algorithm to three-dimensional structures is also discussed.