Creation of a Productive, Highly Enantioselective Nitrilase through Gene Site Saturation Mutagenesis (GSSM)

Abstract
Gene site saturation mutagenesis (GSSM) technology is applied for the directed evolution of a nitrilase. The nitrilase effectively catalyzes the desymmetrization of the prochiral substrate 3-hydroxyglutaronitrile to afford (R)-4-cyano-3-hydroxybutyric acid, a precursor to the valuable cholesterol-lowering drug Lipitor. The discovered wild-type enzyme effectively performs the reaction at the industrially relevant 3 M substrate concentration but affords a product enantiomeric excess of only 87.6% ee. Through GSSM, a mutagenesis technique that effects the combinatorial saturation of each amino acid in the protein to each of the other 19 amino acids, combined with a novel high-throughput mass spectroscopy assay, a number of improved variants were identified, the best of which is the Ala190His mutant that yields product enantiomeric excess of 98.5% at 3 M substrate loading and a volumetric productivity of 619 g L-1 d-1.

This publication has 10 references indexed in Scilit: