The geosimulation of West Nile virus propagation: a multi-agent and climate sensitive tool for risk management in public health

Abstract
Since 1999, the expansion of the West Nile virus (WNV) epizooty has led public health authorities to build and operate surveillance systems in North America. These systems are very useful to collect data, but cannot be used to forecast the probable spread of the virus in coming years. Such forecasts, if proven reliable, would permit preventive measures to be put into place at the appropriate level of expected risk and at the appropriate time. It is within this context that the Multi-Agent GeoSimulation approach has been selected to develop a system that simulates the interactions of populations of mosquitoes and birds over space and time in relation to the spread and transmission of WNV. This simulation takes place in a virtual mapping environment representing a large administrative territory (e.g. province, state) and carried out under various climate scenarios in order to simulate the effects of vector control measures such as larviciding at scales of 1/20 000 or smaller.