On reduced-gravity flow through sills

Abstract
The hydraulic flow of a reduced-gravity fluid of non-negative potential vorticity through a sill is considered. It is shown that for any flow with a reversal of current, another, physically realisable, flow exists which is unidirectional and/or resting, and carries more flux than the original flow. Thus only non-negative flows need be considered when examining maximal hydraulic fluxes. Then, for a simple sill (one which slopes downward on the left and upward on the right, looking downstream), it is shown that zero potential vorticity flow, possibly modified by having a region of motionless fluid at its right, carries the maximum flux possible for that sill shape. This makes the calculation of maximal fluxes for a given sill considerably simpler, and examples of parabolic and V-shaped sills are computed.

This publication has 8 references indexed in Scilit: