A three-dimensional ultrasonic cage for characterization of individual cells

Abstract
We demonstrate enrichment, controlled aggregation, and manipulation of microparticles and cells by an ultrasonic cage integrated in a microfluidic chip compatible with high-resolution optical microscopy. The cage is designed as a dual-frequency resonant filleted square box integrated in the fluid channel. Individual particles may be trapped three dimensionally, and the dimensionality of one-dimensional to three-dimensional aggregates can be controlled. We investigate the dependence of the shape and position of a microparticle aggregate on the actuation voltages and aggregate size, and demonstrate optical monitoring of individually trapped live cells with submicrometer resolution.