Dealing with heterogeneity of treatment effects: is the literature up to the challenge?
Open Access
- 19 June 2009
- journal article
- research article
- Published by Springer Nature in Trials
- Vol. 10 (1) , 43
- https://doi.org/10.1186/1745-6215-10-43
Abstract
Some patients will experience more or less benefit from treatment than the averages reported from clinical trials; such variation in therapeutic outcome is termed heterogeneity of treatment effects (HTE). Identifying HTE is necessary to individualize treatment. The degree to which heterogeneity is sought and analyzed correctly in the general medical literature is unknown. We undertook this literature sample to track the use of HTE analyses over time, examine the appropriateness of the statistical methods used, and explore the predictors of such analyses. Articles were selected through a probability sample of randomized controlled trials (RCTs) published in Annals of Internal Medicine, BMJ, JAMA, The Lancet, and NEJM during odd numbered months of 1994, 1999, and 2004. RCTs were independently reviewed and coded by two abstractors, with adjudication by a third. Studies were classified as reporting: (1) HTE analysis, utilizing a formal test for heterogeneity or treatment-by-covariate interaction, (2) subgroup analysis only, involving no formal test for heterogeneity or interaction; or (3) neither. Chi-square tests and multiple logistic regression were used to identify variables associated with HTE reporting. 319 studies were included. Ninety-two (29%) reported HTE analysis; another 88 (28%) reported subgroup analysis only, without examining HTE formally. Major covariates examined included individual risk factors associated with prognosis, responsiveness to treatment, or vulnerability to adverse effects of treatment (56%); gender (30%); age (29%); study site or center (29%); and race/ethnicity (7%). Journal of publication and sample size were significant independent predictors of HTE analysis (p < 0.05 and p < 0.001, respectively). HTE is frequently ignored or incorrectly analyzed. An iterative process of exploratory analysis followed by confirmatory HTE analysis will generate the data needed to facilitate an individualized approach to evidence-based medicine.Keywords
This publication has 52 references indexed in Scilit:
- Statistics in Medicine — Reporting of Subgroup Analyses in Clinical TrialsNew England Journal of Medicine, 2007
- Systematic review and meta-analysis of ethnic differences in risks of adverse reactions to drugs used in cardiovascular medicineBMJ, 2006
- Subgroup analyses in therapeutic cardiovascular clinical trials: Are most of them misleading?American Heart Journal, 2006
- Controversies concerning randomization and additivity in clinical trialsStatistics in Medicine, 2004
- Initial Treatment of Aggressive Lymphoma with High-Dose Chemotherapy and Autologous Stem-Cell SupportNew England Journal of Medicine, 2004
- Are Some Patients Likely to Benefit From Recombinant Tissue-Type Plasminogen Activator for Acute Ischemic Stroke Even Beyond 3 Hours From Symptom Onset?Stroke, 2003
- Subgroup analysis, covariate adjustment and baseline comparisons in clinical trial reporting: current practiceand problemsStatistics in Medicine, 2002
- How Do Risk Factors Work Together? Mediators, Moderators, and Independent, Overlapping, and Proxy Risk FactorsAmerican Journal of Psychiatry, 2001
- Renoprotective properties of ACE-inhibition in non-diabetic nephropathies with non-nephrotic proteinuriaThe Lancet, 1999
- Determining Optimal Therapy — Randomized Trials in Individual PatientsNew England Journal of Medicine, 1986