Gas Kinematics and the Black Hole Mass at the Center of the Radio Galaxy NGC 4335

Abstract
(abridged) We investigate the kinematics of the central gas disk of the radio-loud elliptical galaxy NGC 4335, derived from HST/STIS long-slit spectroscopic observations of Halpha+[NII] along 3 parallel slit positions. The observed mean velocities are consistent with a rotating thin disk. We model the gas disk in the customary way. This sets a 3 sigma upper limit of 10^8 Msun on black hole mass, Mbh. The velocity dispersion at r = 3x10^9 Msun. However, there is reason to believe that this model overestimates Mbh. Reported correlations between black hole mass and inner stellar velocity dispersion sigma predict Mbh to be >= 5.4x10^8 Msun in NGC 4335. If our standard thin disk modeling of the gas kinematics is valid, then NGC 4335 has an unusually low Mbh for its velocity dispersion. If, on the other hand, this approach is flawed, and provides an underestimate of Mbh, then black hole masses for other galaxies derived from HST gas kinematics with the same assumptions should be treated with caution.

This publication has 0 references indexed in Scilit: