Abstract
Modifications to infant formulas are continually being made as the components of human milk are characterized and as the nutrient needs of diverse groups of infants are identified. Formulas with long-chain polyunsaturated fatty acids added in amounts similar to those in human milk have recently become available in the United States; infants fed these formulas or human milk have higher tissue concentrations of long-chain polyunsaturated fatty acids and reportedly have better visual acuity than do infants fed nonsupplemented formulas. Selenium, an important antioxidant, is present in higher concentrations in human milk than in nonfortified cow milk–based formula, and the selenium intakes of infants fed nonfortified formulas are reported to be at or below recommended levels. Blood selenium concentrations and plasma glutathione peroxidase activity are higher in infants fed selenium-supplemented formulas or human milk than in infants fed nonfortified formulas. Nucleotides and their related products play key roles in many biological processes. Although nucleotides can be synthesized endogenously, they are considered “conditionally essential.” Nucleotide concentrations in human milk are higher than in unsupplemented cow milk–based formulas, and studies in animals and human infants suggest that dietary nucleotides play a role in the development of the gastrointestinal and immune systems. Formulas for preterm infants after hospital discharge are designed to meet the needs of a population in whom growth failure is common. Several studies have shown that preterm infants fed nutrient-enriched formulas after hospital discharge have higher rates of catch-up growth than do infants fed standard term-infant formulas.