Contraction-induced potentiation of human motor unit discharge and surface EMG activity

Abstract
In quadrupeds, an electrically induced, moderate to high intensity brief muscle contraction potentiates autogenetic excitation and leads to enhanced recruitment and/or tonic firing frequency of .alpha.-motor neurons. To determine if similar adaptations occur in humans, single motor units (SMUs) and surface electromyographic activity (EMG) were recorded from the right biceps brachii before and immediately after a 5-s 25% or 50% maximum voluntary contraction (MVC), while subjects held a handle (0-1% MVC) attached to a force transducer or maintained a 2% MVC for 30-60 s. Of 26 SMUs recorded, 15 increased, 4 decreased, and 7 showed no change in firing frequency (mean increase: 5 imp/s, P < 0.01). Twelve SMUs had lower recruitment force thresholds after contraction. There was no significant treatment effect for the % MVC intensity. The postcontraction surface EMG power spectrum broadened, increased in amplitude, and contained a higher frequency component than the control contraction power spectrum. Changes in recruitment and/or frequency coding were reflected in the raw EMG records. Findings agree with previous reports in animals of contraction-induced potentiation of subsequent submaximal muscle contractions. Such acute adaptations in spinal neuromuscular pathways would function to optimize force output to a submaximal range of neural input frequencies.