Stimulus Rate and Subcortical Auditory Processing of Speech
- 10 March 2010
- journal article
- research article
- Published by S. Karger AG in Audiology and Neurotology
- Vol. 15 (5) , 332-342
- https://doi.org/10.1159/000289572
Abstract
Many sounds in the environment, including speech, are temporally dynamic. The auditory brainstem is exquisitely sensitive to temporal features of the incoming acoustic stream, and by varying the speed of presentation of these auditory signals it is possible to investigate the precision with which temporal cues are represented at a subcortical level. Therefore, to determine the effects of stimulation rate on the auditory brainstem response (ABR), we recorded evoked responses to both a click and a consonant-vowel speech syllable (/da/) presented at three rates (15.4, 10.9 and 6.9 Hz). We hypothesized that stimulus rate affects the onset to speech-evoked responses to a greater extent than click-evoked responses and that subcomponents of the speech- ABR are distinctively affected. While the click response was invariant with changes in stimulus rate, timing of the onset response to /da/ varied systematically, increasing in peak latency as presentation rate increased. Contrasts between the click- and speech-evoked onset responses likely reflect acoustic differences, where the speech stimulus onset is more gradual, has more delineated spectral information, and is more susceptible to backward masking by the subsequent formant transition. The frequency-following response (FFR) was also rate dependent, with response magnitude of the higher frequencies (>400 Hz), but not the frequencies corresponding to the fundamental frequency, diminishing with increasing rate. The selective impact of rate on high-frequency components of the FFR implicates the involvement of distinct underlying neural mechanisms for high- versus low-frequency components of the response. Furthermore, the different rate sensitivities of the speech-evoked onset response and subcomponents of the FFR support the involvement of different neural streams for these two responses. Taken together, these differential effects of rate on the ABR components likely reflect distinct aspects of auditory function such that varying rate of presentation of complex stimuli may be expected to elicit unique patterns of abnormality, depending on the clinical population.Keywords
This publication has 55 references indexed in Scilit:
- Brainstem Timing Deficits in Children with Learning Impairment May Result from Corticofugal OriginsAudiology and Neurotology, 2008
- Speech-evoked brainstem frequency-following responses during verbal transformations due to word repetitionElectroencephalography and Clinical Neurophysiology, 1997
- Temporal Processing Deficits of Language-Learning Impaired Children Ameliorated by TrainingScience, 1996
- Intelligible speech encoded in the human brain stem frequency-following responseNeuroReport, 1995
- Central auditory aging: GABA changes in the inferior colliculusExperimental Gerontology, 1995
- Auditory Brain Stem Response for Objective Measures of HearingEar & Hearing, 1993
- The human frequency-following response (FFR): Normal variability and relation to the click-evoked brainstem responseHearing Research, 1992
- The Effects of ABR Stimulus Repetition Rate in Multiple SclerosisEar & Hearing, 1987
- The relationship between auditory temporal analysis and receptive language development: Evidence from studies of developmental language disorderNeuropsychologia, 1984
- Perception of short-term spectral cues for stop consonant place by normal and hearing-impaired subjectsThe Journal of the Acoustical Society of America, 1982