Abstract
If the mechanism responsible for the smallness of the vacuum energy is consistent with local quantum field theory, general arguments suggest the existence of at least one unobserved scalar particle with Compton wavelength bounded from below by one tenth of a millimeter. We show that this bound is saturated if vacuum energy is a substantial component of the energy density of the universe. Therefore, the success of cosmological models with a significant vacuum energy component suggests the existence of new macroscopic forces with range in the sub-millimeter region. There are virtually no experimental constraints on the existence of quanta with this range of interaction.

This publication has 0 references indexed in Scilit: