Execution monitoring in assembly with learning capabilities

Abstract
A generic architecture for execution supervision of robotic assembly tasks is presented. This architecture provides, at different levels of abstraction, functions for dispatching actions, monitoring their execution, and diagnosing and recovering from failures. Modeling execution failures through taxonomies and causal networks plays a central role in diagnosis and recovery. A discussion on the process of acquisition of such monitoring knowledge is made. Through the use of machine learning techniques, the supervision architecture will be given capabilities for improving its performance over time. Preliminary results of applying machine learning in this area are presented and planned extensions discussed.

This publication has 2 references indexed in Scilit: