Mutation of HAIRY-AND-ENHANCER-OF-SPLIT-7 in humans causes spondylocostal dysostosis
Open Access
- 21 August 2008
- journal article
- research article
- Published by Oxford University Press (OUP) in Human Molecular Genetics
- Vol. 17 (23) , 3761-3766
- https://doi.org/10.1093/hmg/ddn272
Abstract
Spondylocostal dysostosis (SCD) is an inherited disorder that is characterized by the presence of extensive hemivertebrae, truncal shortening and abnormally aligned ribs. It arises during embryonic development by a disruption of formation of somites (the precursor tissue of the vertebrae, ribs and associated tendons and muscles). Previously, three genes causing a subset of autosomal recessive forms of this disease have been identified: DLL3 (SCDO1: MIM 277300), MESP2 (SCDO2: MIM 608681) and LFNG (SCDO3: MIM609813). These genes are all important components of the Notch signaling pathway, which has multiple roles in development and disease. Here we have used autozygosity mapping to identify a mutation in a fourth Notch pathway gene, HAIRY-AND-ENHANCER-OF-SPLIT-7 (HES7), in an autosomal recessive SCD family. HES7 encodes a bHLH-Orange domain transcriptional repressor protein that is both a direct target of the Notch signaling pathway, and part of a negative feedback mechanism required to attenuate Notch signaling. A missense mutation was identified in the DNA-binding domain of the HES7 protein. Functional analysis revealed that the mutant HES7 was not able to repress gene expression by DNA binding or protein heterodimerization. This is the first report of mutation in the human HES7 gene, and provides further evidence for the importance of the Notch signaling pathway in the correct patterning of the axial skeleton.Keywords
This publication has 25 references indexed in Scilit:
- Mutations in GDF6 are associated with vertebral segmentation defects in Klippel-Feil syndromeHuman Mutation, 2008
- Disruption of the somitic molecular clock causes abnormal vertebral segmentationBirth Defects Research Part C: Embryo Today: Reviews, 2007
- Delta Notch and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factorsNucleic Acids Research, 2007
- Abnormal vertebral segmentation and the notch signaling pathway in manDevelopmental Dynamics, 2007
- Notch Signaling in Development and CancerEndocrine Reviews, 2007
- A Complex Oscillating Network of Signaling Genes Underlies the Mouse Segmentation ClockScience, 2006
- Mutation of the LUNATIC FRINGE Gene in Humans Causes Spondylocostal Dysostosis with a Severe Vertebral PhenotypeAmerican Journal of Human Genetics, 2006
- Mutated MESP2 Causes Spondylocostal Dysostosis in HumansAmerican Journal of Human Genetics, 2004
- Vertebrate hairy and Enhancer of split related proteins: transcriptional repressors regulating cellular differentiation and embryonic patterningOncogene, 2001
- Mutations in the human Delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosisNature Genetics, 2000