Saturation and inverse-saturation absorption line shapes in alexandrite

Abstract
Through the use of modulation spectroscopy we have measured the absorption spectrum experienced by a weak probe beam in the presence of a saturating pump beam at two different wavelengths within the broad homogeneous absorption band of alexandrite. At 584 nm the absorption saturates at high pump intensities, and a hole (of width 612 Hz) appears at frequencies near that of the pump laser. However, at 457 nm the absorption demonstrates the inverse of normal saturation because of strong excited-state absorption, and an antihole appears at the pump frequency. These results are in good quantitative agreement with the predictions of a model that ascribes the origin of these spectral features to the temporal modulation of the ground-state population at the beat frequency between the pump and the probe beams. These population oscillations are treated properly within a rate-equation approximation in which the amplitude modulation of the total optical intensity caused by the beating of the pump and the probe beams is taken into account.