Regional Heterogeneity of 5-HT1A Receptors in Human Cerebellum as Assessed by Positron Emission Tomography

Abstract
Two measures used in brain imaging are binding potential (BP) and the specific to nonspecific equilibrium partition coefficient ( V3“). V3” determined using the 5-HT1A ligand [11C]WAY-100635 is sensitive to changes in the free and nonspecific binding of the ligand in the reference region ( V2). Healthy female volunteers have higher 5-HT1A BP but not V3“ compared with men, because V2 is higher in women. While there could be several explanations for this observation, we hypothesized that women have more 5-HT1A receptors in the cerebellum. We explore the cerebellum to define a subregion that more accurately represents the free and nonspecific binding, potentially allowing the use of V3”. A quantitative autoradiogram in human brain using [3H]WAY-100635 identified a cerebellar subregion devoid of 5-HT1A receptors. In vivo 5-HT1A receptors were evaluated using [11C]WAY-100635 in 12 healthy women and 13 healthy men. Each subject had a metabolite-corrected arterial input function. The autoradiogram demonstrates the lowest concentration of 5-HT1A receptors in the cerebellar white matter (CW) and highest concentration in the cerebellar vermis (CV). The CW volume of distribution ( VT) is lower than CV. Cerebellar white matter is adequately modeled by a one-tissue compartmental model, while a two-tissue model is necessary to model CV or the total cerebellum (CT). Women have a higher CW VT compared with men, suggesting a difference in V2. Use of CW improves identifiability and time stability of BP in cortical regions. Cerebellar white matter might be a better reference region for use in future 5-HT1A studies using [11C]WAY-100635. With CW as a reference region, V3“ cannot be used to detect differences in 5-HT1A receptors between men and women, suggesting the need for arterial input functions to determine BP.