Biosynthesis of the cyanobacterial reserve polymer multi‐L‐arginyl‐poly‐L‐aspartic acid (cyanophycin)

Abstract
Biosynthesis of the cyanobacterial nitrogen reserve cyanophycin (multi-l-arginyl-poly-l-aspartic acid) is catalysed by cyanophycin synthetase, an enzyme that consists of a single kind of polypeptide. Efficient synthesis of the polymer requires ATP, the constituent amino acids aspartic acid and arginine, and a primer like cyanophycin. Using synthetic peptide primers, the course of the biosynthetic reaction was studied. The following results were obtained: (a) sequence analysis suggests that cyanophycin synthetase has two ATP-binding sites and hence probably two active sites; (b) the enzyme catalyses the formation of cyanophycin-like polymers of 25–30 kDa apparent molecular mass in vitro; (c) primers are elongated at their C-terminus; (d) the constituent amino acids are incorporated stepwise, in the order aspartic acid followed by arginine, into the growing polymer. A mechanism for the cyanophycin synthetase reaction is proposed; (e) the specificity of the enzyme for its amino-acid substrates was also studied. Glutamic acid cannot replace aspartic acid as the acidic amino acid, whereas lysine can replace arginine but is incorporated into cyanophycin at a much lower rate.

This publication has 40 references indexed in Scilit: