Frictional Characteristics of Atomically Thin Sheets
Top Cited Papers
- 2 April 2010
- journal article
- other
- Published by American Association for the Advancement of Science (AAAS) in Science
- Vol. 328 (5974) , 76-80
- https://doi.org/10.1126/science.1184167
Abstract
Thin Friction: The rubbing motion between two surfaces is always hindered by friction, which is caused by continuous contacting and attraction between the surfaces. These interactions may only occur over a distance of a few nanometers, but what happens when the interacting materials are only that thick? Lee et al. (p. 76 ; see the Perspective by Müser and Shakhvorostov ) explored the frictional properties of a silicon tip in contact with four atomically thin quasi–two dimensional materials with different electrical properties. For all the materials, the friction was seen to increase as the thickness of the film decreased, both for flakes supported by substrates and for regions placed above holes that formed freely suspended membranes. Placing graphene on mica, to which it strongly adheres, suppressed this trend. For these thin, weakly adhered films, out-of-plane buckling is likely to dominate the frictional response, which leads to this universal behavior.Keywords
This publication has 28 references indexed in Scilit:
- Ultraflat grapheneNature, 2009
- Graphene: Status and ProspectsScience, 2009
- Transition from Thermal to Athermal Friction under Cryogenic ConditionsPhysical Review Letters, 2009
- Current saturation in zero-bandgap, top-gated graphene field-effect transistorsNature Nanotechnology, 2008
- Energy Band-Gap Engineering of Graphene NanoribbonsPhysical Review Letters, 2007
- Raman Spectrum of Graphene and Graphene LayersPhysical Review Letters, 2006
- Electric Field Effect in Atomically Thin Carbon FilmsScience, 2004
- Structural lubricity: Role of dimension and symmetryEurophysics Letters, 2004
- Edge state in graphene ribbons: Nanometer size effect and edge shape dependencePhysical Review B, 1996
- Atomic-scale friction of a tungsten tip on a graphite surfacePhysical Review Letters, 1987