Universal transport in 2D granular superconductors

Abstract
The transport properties of quench condensed granular superconductors are presented and analyzed. These systems exhibit transitions from insulating to superconducting behavior as a function of inter-grain spacing. Superconductivity is characterized by broad transitions in which the resistance drops exponentially with reducing temperature. The slope of the log R versus T curves turns out to be universaly dependent on the normal state film resistance for all measured granular systems. It does not depend on the material, critical temperature, geometry, or experimental set-up. We discuss possible physical scenarios to explain these findings.

This publication has 0 references indexed in Scilit: