Compression of two-dimensional data
- 1 January 1986
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Information Theory
- Vol. 32 (1) , 2-8
- https://doi.org/10.1109/tit.1986.1057132
Abstract
Distortion-free compressibility of individual pictures, i.e., two-dimensional arrays of data, by finite-state encoders is investigated. For every individual infinite pictureI, a quantity\rho(I)is defined, called the compressibility ofI, which is shown to be the asymptotically attainable lower bound on the compression ratio that can be achieved forIby any finite-state information-lossless encoder. This is demonstrated by means of a constructive coding theorem and its converse that, apart from their asymptotic significance, might also provide useful criteria for finite and practical data-compression tasks. The proposed picture compressibility is also shown to possess the properties that one would expect and require of a suitably defined concept of two-dimensional entropy for arbitrary probabilistic ensembles of infinite pictures. While the definition of\rho(I)allows the use of different machines for different pictures, the constructive coding theorem leads to a universal compression scheme that is asymptotically optimal for every picture. The results are readily extendable to data arrays of any finite dimension.Keywords
This publication has 2 references indexed in Scilit:
- Compression of individual sequences via variable-rate codingIEEE Transactions on Information Theory, 1978
- Mathematical GamesScientific American, 1976