Adaptive Finite Element Methods for Parabolic Problems II: Optimal Error Estimates in $L_\infty L_2 $ and $L_\infty L_\infty $
- 1 June 1995
- journal article
- Published by Society for Industrial & Applied Mathematics (SIAM) in SIAM Journal on Numerical Analysis
- Vol. 32 (3) , 706-740
- https://doi.org/10.1137/0732033
Abstract
No abstract availableThis publication has 9 references indexed in Scilit:
- Adaptive Finite Element Methods for Parabolic Problems V: Long-Time IntegrationSIAM Journal on Numerical Analysis, 1995
- Adaptive Finite Element Methods for Parabolic Problems IV: Nonlinear ProblemsSIAM Journal on Numerical Analysis, 1995
- Adaptive Finite Element Methods for Parabolic Problems I: A Linear Model ProblemSIAM Journal on Numerical Analysis, 1991
- Error Estimates and Adaptive Time-Step Control for a Class of One-Step Methods for Stiff Ordinary Differential EquationsSIAM Journal on Numerical Analysis, 1988
- Time discretization of parabolic problems by the discontinuous Galerkin methodESAIM: Mathematical Modelling and Numerical Analysis, 1985
- Maximum-norm stability and error estimates in Galerkin methods for parabolic equations in one space variableNumerische Mathematik, 1983
- $L^\infty $-Convergence of Linear Finite Element Approximation to Nonlinear Parabolic ProblemsSIAM Journal on Numerical Analysis, 1980
- Mixed finite elements in ?3Numerische Mathematik, 1980
- Maximum norm stability and error estimates in parabolic finite element equationsCommunications on Pure and Applied Mathematics, 1980