The Dynamics of the Antarctic Ice Sheet

Abstract
A three-dimensional dynamic, thermodynamic ice-sheet model has been developed to simulate the past, present, and future behaviour of the Antarctic ice sheet. The present ice velocities depend on the deep ice temperatures which in turn depend on the past changes of the ice sheet, including surface temperature, accumulation rate, and ice thickness. The basal temperatures are also strongly dependent on the geothermal heat flux. The model has therefore been used to study the effect on the basal temperatures, of changes to the geothermal heat flux, as well as the past changes of surface temperature and accumulation rate based on results obtained from the Vostok deep ice core. The model is also used to compute the distribution of surface velocity required to balance the present accumulation rate and the dynamics velocity based on the stress, temperature, and flow properties of ice, for the internal deformation, plus a component due to ice sliding. These velocities are compared to observed surface velocities in East Antarctica to assess the state of balance and the performance of the dynamics formulation.