Abstract
A weakly nonlinear model is developed from the Hamiltonian formulation of water waves, to study the bifurcation structure of gravity-capillary waves on water of finite depth. It is found that, besides a very rich structure of symmetric solutions, non-symmetric Wilton's ripples exist. They appear via a spontaneous symmetrybreaking bifurcation from symmetric solutions. The bifurcation tree is similar to that for gravity waves. The solitary wave with surface tension is studied with the same model close to a critical depth. It is found that the solution is not unique, and that further non-symmetric solitary waves are possible. The bifurcation tree has the same structure as for the case of periodic waves. The possibility of checking these results in low-gravity experiments is postulated.

This publication has 14 references indexed in Scilit: