A Numerical Study of the Effect of Island Terrain on Tropical Cyclones
- 1 January 1987
- journal article
- Published by American Meteorological Society in Monthly Weather Review
- Vol. 115 (1) , 130-155
- https://doi.org/10.1175/1520-0493(1987)115<0130:ansote>2.0.co;2
Abstract
A triply nested, movable mesh model was used to study the behavior of tropical cyclones encountering island mountain ranges. The integration domain consisted of a 37° wide and 45° long channel, with an innermost mesh resolution of 1/6°. The storms used for this study were embedded in easterly flows of ∼5 and ∼10 m s−1 initially. Realistic distributions of island topography at 1/6° resolution were inserted into the model domain for the region of the Caribbean, including the islands of Cuba, Hispaniola, and Puerto Rico; the island of Taiwan; and the region of Luzon in the northern Philippines. It was found that the islands affected the basic flow as well as the wind field directly associated with the storm system. The combination of these effects caused changes in the track and translational speed of the storm. In particular, in the case of the 5 m s−1 easterly flow, the storm accelerated and veered to the north well before reaching Taiwan. For the other island distributions, the northward deflecti... Abstract A triply nested, movable mesh model was used to study the behavior of tropical cyclones encountering island mountain ranges. The integration domain consisted of a 37° wide and 45° long channel, with an innermost mesh resolution of 1/6°. The storms used for this study were embedded in easterly flows of ∼5 and ∼10 m s−1 initially. Realistic distributions of island topography at 1/6° resolution were inserted into the model domain for the region of the Caribbean, including the islands of Cuba, Hispaniola, and Puerto Rico; the island of Taiwan; and the region of Luzon in the northern Philippines. It was found that the islands affected the basic flow as well as the wind field directly associated with the storm system. The combination of these effects caused changes in the track and translational speed of the storm. In particular, in the case of the 5 m s−1 easterly flow, the storm accelerated and veered to the north well before reaching Taiwan. For the other island distributions, the northward deflecti...Keywords
This publication has 0 references indexed in Scilit: