Amplification of cosmological inhomogeneities by the QCD transition

Abstract
The cosmological QCD transition affects primordial density perturbations. If the QCD transition is first order, the sound speed vanishes during the transition and density perturbations fall freely. For scales below the Hubble radius at the transition the primordial Harrison-Zel’dovich spectrum of density fluctuations develops large peaks and dips. These peaks grow with wave number for both the hadron-photon-lepton fluid and for cold dark matter. At the horizon scale the enhancement is small. This by itself does not lead to the formation of black holes at the QCD transition. The peaks in the hadron-photon-lepton fluid are wiped out during neutrino decoupling. For cold dark matter that is kinetically decoupled at the QCD transition (e.g., axions or primordial black holes) these peaks lead to the formation of CDM clumps of masses 1020M<Mclump<1010M.