Protein phosphatase PphA from Synechocystis sp. PCC 6803: the physiological framework of PII-P dephosphorylation
- 1 April 2005
- journal article
- Published by Microbiology Society in Microbiology
- Vol. 151 (4) , 1275-1283
- https://doi.org/10.1099/mic.0.27771-0
Abstract
The phosphorylated signal transduction protein P(II) (P(II)-P) in the cyanobacterium Synechocystis sp. strain PCC 6803 is dephosphorylated by PphA, a protein phosphatase of the 2C family (PP2C). In this study, the physiological conditions of P(II)-P dephosphorylation were investigated with respect to the in vivo specificity of P(II)-P towards PphA and the cellular abundance of PphA in cells growing under different nitrogen regimes. Furthermore, the consequences of impaired P(II)-P dephosphorylation with respect to short-term inhibition of glutamine synthetase (GS) were studied. With a contribution of approximately 15 % of total Mn(2+)-dependent p-nitrophenyl phosphate hydrolysis activity, PphA has only a minor impact on the total PP2C activity in Synechocystis extracts. Nevertheless, residual P(II)-P dephosphorylation in PphA-deficient cells could only be observed after prolonged incubation in the presence of ammonium. The abundance of PphA correlates with the phosphorylation state of P(II) under nitrogen-replete conditions and is specifically enhanced by nitrite. Regulation of pphA expression operates at the post-transcriptional level. In the presence of nitrate/nitrite, PphA is present in molar excess over P(II)-P, enabling the cells to rapidly dephosphorylate P(II)-P in response to changing environmental conditions. A PphA-deficient mutant is not impaired in short-term inhibition of GS activity following ammonium treatment. Down-regulation of GS occurs by induction of gif genes (encoding GS inactivating factors 7 and 17), which is controlled by NtcA-mediated gene repression. Thus, impaired P(II)-P dephosphorylation does not affect ammonium-prompted inactivation of NtcA.Keywords
This publication has 0 references indexed in Scilit: