Abstract
Passive microwave brightness temperatures from the Special Sensor Microwave Imager (SSMI) are studied together with surface air temperatures from two Automatic Weather Stations (AWS) for the year 1989. One station is located on the East Antarctic plateau (Dome C) and the other on the Ross lee Shelf (Lettau).The satellite data for frequencies 19, 22 and 37 GHz with vertical polarization,centered on the two AWS stations, are studied. A simple thermodynamic model and asimple radiative-transfer model, that takes into account the snow temperature profile and assumes a constant annual emissivity, are proposed. The combination of these two models enables us to compute extinction coefficients, penetration depths and toretrieve the measured brightness temperature variations from the AWS surface temperatures. Afterwards, this model is reversed in order to retrieve the snow-surface temperatures from the satellite data. Results are promising but strong approximationsand a priori knowledge of the extinction coefficient are still needed at this point.