Biosynthetic human GM-CSF modulates the number and affinity of neutrophil f-Met-Leu-Phe receptors.

Abstract
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) modulates the function of mature neutrophils by priming for enhanced chemotaxis and oxidative metabolism in response to N-formyl-methionyl-leucyl-phenylalanine (f-Met-Leu-Phe). Our studies establish a relationship between f-Met-Leu-Phe receptor number and affinity and neutrophil chemotaxis and oxidative metabolism. A brief (5- to 15-min) exposure to physiologic concentrations of GM-CSF (10 pM to 100 pM) enhances f-Met-Leu-Phe-induced neutrophil chemotaxis by 85%, correlating with a rapid threefold increase (46,000/cell to 150,000/cell) in high-affinity neutrophil f-Met-Leu-Phe receptors. More prolonged incubation (1 to 2 hr) of neutrophils with GM-CSF is accompanied by a change to low-affinity f-Met-Leu-Phe receptors (Kd = 29 nM to Kd = 99 nM) concomitant with priming for enhanced neutrophil oxidative metabolism. Moreover, enhanced chemotactic responses to f-Met-Leu-Phe are no longer evident after more prolonged incubation of neutrophils with GM-CSF. These results show that a single lymphokine (GM-CSF) induces sequential changes in neutrophil f-Met-Leu-Phe receptor number and affinity that may enhance different physiologic responses.