Abstract
A cell-free system from the protozoan Tetrahymena pyriformis capable of cyclizing squalene into tetrahymanol cyclizes all-trans pentaprenyl methyl ether to a scalarane-type sesterterpene and all-trans hexaprenyl methyl ether to bicyclo-, tricyclo-, tetracyclo- and pentacyclohexaprenyl methyl ethers, each corresponding to a possible cationic intermediate. The structures of the cyclization products have been determined by spectroscopic methods and are compatible with a biogenetic scheme involving polyprenyl ether cyclization. This is the first direct proof of an enzymatic cyclization of higher isoprenic alcohol derivatives, and we assume it was performed by the squalene-to-hopane cyclase of the protozoon. The formation of a scalarane-type sesterterpene from C25 polyprenyl methyl ether suggests that these terpenoids, whose presence is restricted to a few sponges, might be in fact microbial metabolites. Tricyclopolyprenyl derivatives have been identified in the organic matter from numerous sediments and they were interpreted as being chemical fossils of still unidentified microorganisms. The cyclization of hexaprenyl methyl ether is the first attempt of identification of these tricyclopolyprenol derivatives in living organisms.