Physiological response of cut rose flowers to cold storage

Abstract
The effects of low temperature storage on the physiology of cut rose flowers (Rosa hybridaL. cv. Mercedes) were studied. Extension of cold storage or increase in temperature (from 3 to 8°C) was accompanied by shortening of vase life and advancement of petal senescence, as reflected in an advance in the timing of the rise in ethylene production and an increase in membrane permeability (ion leakage). Although storage at a relative humidity (RH) of 65% reduced petal water content by 20% in comparison with flowers stored at 95% RH, it did not shorten vase life. The progression of petal senescence was measured during storage at 3°C and during aging at 22°C. Both ethylene production rates and membrane microviscosity measured by fluorescence depolarization increased with time at 3°C and at 22°C, but more slowly at 3°C. At 3°C membrane permeability measured by ion leakage did not increase. Following cold storage the rate of ethylene production in the petals was increased by up to eight times the rate in unstored flowers. Silver thiosulphate extended the vase life of both stored and fresh flowers equally by 2 days, but did not increase the life of stored flowers to that of treated fresh flowers. It is concluded that the primary effect of cold storage on roses is to slow down senescence and that the continued slow senescence leads to shorter vase life. The possible occurrence of sequential processes during senescence and the effects of temperature on these processes is discussed.