Combining Prior Symbolic Knowledge and Constructive Neural Network Learning

Abstract
The concepts of knowledge-based systems and machine learning are combined by integrating an expert system and a constructive neural networks learning algorithm. Two approaches are explored: embedding the expert system directly and converting the expert system rule base into a neural network. This initial system is then extended by constructively learning additional hidden units in a problem-specific manner. Experiments performed indicate that generalization of a combined system surpasses that of each system individually.

This publication has 8 references indexed in Scilit: