A Novel Pathogenic Taxon of the Mycobacterium tuberculosis Complex, Canetti: Characterization of an Exceptional Isolate from Africa
- 1 October 1997
- journal article
- research article
- Published by Microbiology Society in International Journal of Systematic and Evolutionary Microbiology
- Vol. 47 (4) , 1236-1245
- https://doi.org/10.1099/00207713-47-4-1236
Abstract
In an attempt to characterize an unusual mycobacterial strain isolated from a 2-year-old Somali patient with lymphadenitis, we applied various molecular methods not previously used for the taxonomic classification of mycobacteria. This isolate, designated So93, did not differ from Mycobacterium tuberculosis in the biochemical tests and in its 16S rRNA sequence, but produced smooth and glossy colonies, which is highly exceptional for this species. This smooth phenotype was unstable and switched nonreversibly to a rough colony morphology with a low frequency. The two colony types were equally virulent for the guinea pig, exhibiting characteristic tuberculous disease. Both morphotypes had shorter generation times than the M. tuberculosis reference laboratory strain H37Rv and clinical isolates of M. tuberculosis and Mycobacterium bovis. Furthermore, the So93 isolate differed from all M. tuberculosis complex strains described thus far by having only a single copy of insertion sequence IS1081, an unusual composition of the direct repeat cluster, and a characteristic phenolic glycolipid and lipooligosaccharide. This glycolipid had previously been observed only in a smooth isolate of M. tuberculosis obtained in 1969 by Canetti in France. Analysis of the Canetti strain showed that it shared virtually all genetic properties characteristic of So93, distinguishing these two strains from the known M. tuberculosis complex taxa, M. tuberculosis, Mycobacterium africanum, M. bovis, and Mycobacterium microti. The natural reservoir, host range, and mode of transmission of the group of bacteria described in this paper are presently unknown. This study, partly based on not previously used molecular criteria, supports the idea that the established members within the M. tuberculosis complex and the newly described Canetti grouping should be regarded as a single species, which likely will be designated “M. tuberculosis”.This publication has 12 references indexed in Scilit:
- Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms.Proceedings of the National Academy of Sciences, 1989
- Ability of smooth and rough variants of mycobacterium avium and M. intracellulare to multiply and survive intracellularly: role of C-mycosidesZentralblatt für Bakteriologie, Mikrobiologie und Hygiene. Series A: Medical Microbiology, Infectious Diseases, Virology, Parasitology, 1989
- Structure of the major triglycosyl phenol‐phthiocerol of Mycobacterium tuberculosis (strain Canetti)European Journal of Biochemistry, 1987
- Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gelsElectrophoresis, 1987
- Evaluation of a bioluminescence assay for rapid antimicrobial susceptibility testing of mycobacteriaEuropean Journal of Clinical Microbiology & Infectious Diseases, 1985
- Taxonomic Studies on the Mycobacterium tuberculosis SeriesMicrobiology and Immunology, 1985
- Ultrastructural Characterization of Normal and Damaged Membranes of Mycobacterium leprae and of Cultivable MycobacteriaMicrobiology, 1984
- DNA sequencing with chain-terminating inhibitorsProceedings of the National Academy of Sciences, 1977
- HISTORY OF H37 STRAIN OF TUBERCLE BACILLUSPublished by Elsevier ,1946
- BIOLOGICAL STUDIES OF THE TUBERCLE BACILLUSThe Journal of Experimental Medicine, 1933