A new property of reproducing kernels for classical orthogonal polynomials
- 1 September 1983
- journal article
- Published by Elsevier in Journal of Mathematical Analysis and Applications
- Vol. 95 (2) , 491-500
- https://doi.org/10.1016/0022-247x(83)90123-3
Abstract
No abstract availableKeywords
This publication has 11 references indexed in Scilit:
- Differential Operators Commuting with Finite Convolution Integral Operators: Some Nonabelian ExamplesSIAM Journal on Applied Mathematics, 1982
- A remark on Hilbert's matrixLinear Algebra and its Applications, 1982
- Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty-V: The Discrete CaseBell System Technical Journal, 1978
- Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty - IV: Extensions to Many Dimensions; Generalized Prolate Spheroidal FunctionsBell System Technical Journal, 1964
- Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty-III: The Dimension of the Space of Essentially Time- and Band-Limited SignalsBell System Technical Journal, 1962
- Orthogonale Polynomsysteme als L sungen Sturm-Liouvillescher DifferenzengleichungenMonatshefte für Mathematik, 1962
- Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty - IIBell System Technical Journal, 1961
- Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty - IBell System Technical Journal, 1961
- A new class of orthogonal polynomials: The Bessel polynomialsTransactions of the American Mathematical Society, 1949
- Über Sturm-Liouvillesche PolynomsystemeMathematische Zeitschrift, 1929