Nitric oxide and carbon monoxide as possible retrograde messengers in hgippocampal long‐term potentiation
- 1 June 1994
- journal article
- review article
- Published by Wiley in Journal of Neurobiology
- Vol. 25 (6) , 652-665
- https://doi.org/10.1002/neu.480250607
Abstract
We have been investigating the hypothesis that the membrane‐permeant molecules nitric oxide (NO) and carbon monoxide(CO) may act as retrograde messengers during long‐term potentiation (LTP). Inhibitors of either NO synthase or heme oxygenase, the enzyme that produces CO, blocked induction of LTP in the CA1 region of hippocampal slices. Brief application of either NO or CO to slices produced a rapid and long‐lasting increase in the size of synaptic potentials if, and only if, the application occurred at the same time as weak tetanic stimulation of the presynaptic fibers. The long‐term enhancement by NO or CO was spatially restricted to synapses from active presynaptic fibers and appeared to involve mechanisms utilized by LTP, occluding the subsequent induction of LTP by strong tetanic stimulation. The enhancement by No or CO was not blocked by the NMDA receptor blocker APV, suggesting that NO and CO act downstream for the NMDA receptor. In other systems, both NO and CO produce many of their effects by activation of soluble guanylyl cyclase nd cGMP‐dependent protein kinase. An inhibitor of soluble guabylyl cyclase blocked the induction of normal LTP. Conversely, membrane‐permeabel analog 8‐Br‐cGMP produced a rapid onset and long‐lasting synaptic enhancement if, and only if, it was applied at the same time as weak presynaptic stimulation. Similarly, two inhibitors of cGMP‐dependent protein kinase blocked the induction of normal LTP, and a selective activator of cGMP‐dependent protein kinase produced activity‐dependent long‐lasting synaptic enhancement. 8‐Br‐cGMP also produced and activity‐dependent, long‐lasting increase in the amplitude of evoked synaptic current between pairs of hippocampal neurons in dissociated cell culture. In addition, 8‐Br‐cGMP, like NO, produced a long‐lasting increase in the frequency of spontaneous miniature synaptic currents. These results are consistent with the hypothesis that NO and CO, either alone or in combination, serve as retrograde messengers that produce activity‐dependent presynaptic enhancement, perhaps by stimulating soluble guanbylyl cyclase and cGMP‐dependent protein kinase, during LTP in hippocampus. 1994 John Wiley & Sons, Inc.Keywords
This publication has 98 references indexed in Scilit:
- Locally Distributed Synaptic Potentiation in the HippocampusScience, 1994
- Long-term potentiation in the hippocampus induced by platelet-activating factorNeuron, 1993
- Enhancement of hippocampal excitatory synaptic transmission by platelet-activating factorNeuron, 1992
- Temporal limits on the rise in postsynaptic calcium required for the induction of long-term potentiationNeuron, 1992
- Long-term potentiation is associated with increases in quantal content and quantal amplitudeNature, 1992
- Postsynaptic contribution to long-term potentiation revealed by the analysis of miniature synaptic currentsNature, 1992
- Quantal analysis of excitatory synaptic action and depression in hippocampal slicesNature, 1991
- Inhibition of long-term potentiation by an antagonist of platelet-activating factor receptorsBehavioral and Neural Biology, 1990
- Postsynaptic Calcium Is Sufficient for Potentiation of Hippocampal Synaptic TransmissionScience, 1988
- LOSS OF RECENT MEMORY AFTER BILATERAL HIPPOCAMPAL LESIONSJournal of Neurology, Neurosurgery & Psychiatry, 1957