Triaxial magnetic field gradient system for microcoil magnetic resonance imaging

Abstract
There is a great advantage in signal to noise ratio (S/N) that can be obtained in nuclear magnetic resonance (NMR) experiments on very small samples (having spatial dimensions ∼100 μm or less) if one employs NMR “micro” receiver coils, “microcoils,” which are of similarly small dimensions. The gains in S/N could enable magnetic resonance imaging (MRI) microscopy with spatial resolution of ∼1–2 μm, much better than currently available. Such MRI microscopy however requires very strong (>10 T/m), rapidly switchable triaxial magnetic field gradients. Here, we report the design and construction of such a triaxial gradient system, producing gradients substantially greater than 15 T/m in all three directions, x, y, and z (and as high as 50 T/m for the x direction). The gradients are switchable within time ∼10 μs and adequately uniform (within 5% over a volume of [600μm3] for microcoil MRI of small samples.

This publication has 18 references indexed in Scilit: