Raman Spectroscopy Study of the B-Z Transition in (dG-dC)n· (dG-dC)nand a DNA Restriction Fragment

Abstract
The B to Z conformational transition of (dG-dC)n·(dG-dC)n and a 157 bp DNA restriction fragment were followed using Raman spectroscopy. The 157 bp DNA has a 95 bp segment from the E. coli lactose operon sandwiched between 26 and 32 bp of (dC-dG) sequences. Raman spectra of the DNAs were obtained at varying sodium chloride concentrations through the region of the transition. A data analysis procedure was developed to subtract the background curves and quantify Raman vibrational bands. Profiles of relative intensity vs. sodium chloride concentration are shown for bands at 626, 682, 831–833 and 1093 cm−1. Both (dG-dC)n·(dG-dC)n and the 157 bp DNA show changes in the guanine vibration at 682 cm−1 and backbone band at 831–3 cm−1 preceeding a highly cooperative change in the 1093 cm−1 PO 7 vibration. This result indicates that there are at least two conformational steps in the B to Z conformational pathway. We review the effect of the (dC-dG) portion of the 157 bp DNA on the 95 bp segment. Comparison of Raman spectra of the 157 bp DNA, the 95 bp fragment and (dG-dC)n·(dG- dC)n indicate that in 4.5 M NaC/the (dC-dG) segments are in a Z-conformation. Base stacking in the 95 bp portion of the 157 bp DNA appears to maintain a B-type conformation. However, a substantial portion of this region no longer has a B-type backbone vibration.