Relaxation kinetics in quantum cascade lasers

Abstract
Relaxation kinetics in a quantum cascade intersubband laser are investigated. Distribution functions and gain spectra of a three-subband double-quantum-well active region are obtained as a function of temperature and injection current. The potentially important role of the nonequilibrium phonons at lasing threshold is shown and discussed in details. It is shown that the threshold current is strongly dependent of the power dissipated in the active region in steady state. The numerical calculations for an 8.5 μm laser illustrate the general issues of relaxation kinetics in quantum cascade lasers. Temperature dependence of the threshold current is obtained in a good agreement with the experiments.